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1 Existence of Solutions to Nonlinear First Order Scalar
PDEs

1.1 Proving existence and uniqueness given initial data

Last time, we were looking at fully nonlinear equations{
F (x, u, ∂u) = 0

u = u0 on Σ.

If u solves this equation, then (x, u, ∂ju) solves the characteristic system
ẋ = Fp(x, z, p)

ż = Fp(x, z, p) · p
ṗ = −Fx(x, z, p)− Fz(x, z, p) · p.

The initial data for the characteristic system on Σ is
x(0) = x0

z(0) = u0(x0)

p(0) = p0,

where p0 has a tangential component ∂τu0 and a normal component given by solving
F (x0, u0, p0). In this last part, we had a local solvability condition Fp ·N 6= 0, where N is
the normal to Σ. This is the same as the noncharacteristic condition.

Our objective is to turn this into an existence proof.

Theorem 1.1. Assume that F is of class C2, Σ is C2, u0 ∈ C2, and the problem is
noncharacteristic, i.e. there exists p0 on Σ such that Fp0 · N 6= 0, F (x0, u0, p0) = 0, and
(p0)τ = ∂τu0. Then there exists a unique local solution u ∈ C2 near Σ such that u|Σ = u0

and ∂u|Σ = p0.
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Proof. First, an outline:
Step 1: Solve the characteristic system with initial data (x0, u0, p0) on Σ. This gives us

(x(s, x0), u(s, x0), p(s, x0)),

which we can solve by using ODE theory.
Step 2: Show that the map

Σ× [−ε, ε] 3 (x0, s) 7→ x(x0, s) ∈ Rn

is a local diffeomorphism with inverse

x 7→ (x0, s).

Step 3: Define
u(x(s, x0)) = z(s, x0).

This is true if a solution u exists.
The main difficulty is that at the end of our construction, we get the functions

z(s, x0) = u(x), x = x(s, x0), pj(s, x0)
?
= ∂jz(x).

Our final goal is to prove that pj(s, x0) = ∂jz(s, x0). By construction of our initial data, we
know this is true at s = 0. Ideally, we might want to show that ∂

∂s(pj − ∂jz) = 0. Instead,
we will have a weaker version that works:

∂

∂s
(pj − ∂jz) = coeff(pj − ∂jz),

which is a linear ODE for pj − ∂jz.
Our preliminary step is to show that F (x, z, p) = 0. This is true on Σ, i.e. when s = 0.1

Compute
d

ds
F (x, z, p) = Fx · ẋ+ Fz · ż + Fp · ṗ = 0.

Next, compute ∂
∂s(pj − ∂jz). We have

∂

∂s
= (−Fxj − Fz · pj),

but to calculate ∂
∂s∂jz, we need to use ż = Fp · p. We have ∂

∂s = Fpk · ∂
∂xk

, where Fpk has
variable coefficients. So the derivatives do not commute. We can explicitly compute

∂

∂s
∂jz = Fpk∂k∂jz,

1This is the same thing we wanted to do with pj − ∂jz, but that is more difficult to work with because
that is a vector equation, rather than just a scalar equation.
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∂j ż = ∂j(Fpk∂kz) = Fpk∂j∂kz + ∂jFpk · ∂kz,

which gives
∂

∂s
∂jz = ∂j ż − ∂jFpk · ∂kz.

So we get

∂

∂s
(pj − ∂jz) = −Fxj − Fz · pj − ∂j ż + ∂j(Fpk) · ∂kz

= −Fxj − Fz · pj − ∂j(Fpk · pk) + ∂ · (Fpk)∂kz

= −Fxj − Fz · pj − Fpk∂jpk−pk(Fxjpk + Fzpk∂jz + Fp`pk∂jp`) + ∂kz(same)︸ ︷︷ ︸
−(pk−∂kz)·∂jFpk

= −Fxj − Fz · pj − Fpk∂jpk + good.

We also have

Fxj + Fz · ∂jz + Fpk∂jpk = 0

by taking ∂
∂xj

of our earlier computation. This last term Fpk · ∂jpk is the same worst term

in the above expression. If we substitute, we get

∂

∂s
(pj − ∂jz) = −Fz(pj − ∂jz)− ∂jFpk(pk − ∂kz),

which is a linear system.
Therefore, z is the solution to our equation, and we are done.

1.2 Problems in standard form

Example 1.1. Begin with the equation

ut + F (t, x, u, ∂u) = 0

We will label ut as τ , u as z, and ∂u as p. So we get the equation

F̃ (t, x, z, τ, p) = τ + F (t, x, z, p) = 0,

and the system 

ṫ = 1 (so s = t)

ẋ = Fp

ż = τ + Fp · p = Fp · p− F
ṗ = −Fx − Fz · p
τ̇ = −Ft − Fz · τ
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In the middle 3 equations, we have no τ terms, so we can discard the last equation. Another
way to think of this is that F̃ = 0, so τ is already given as −F . So we get a smaller system

ẋ = Fp

ż = Fp · p− F
ṗ = −Fx − Fz · p.

The price we pay is the extra F term in the second equation, compared to before.

Remark 1.1. Solutions are local, near Σ, until characteristics may intersect. There is no
way to continue solutions in general past this intersection of characteristics. For specific
classes of problems, however, there is hope.

Example 1.2. Suppose we have an equation H(x, ∂u) = 0 which does not depend directly
on u. Then we get 

ẋ = Hp

ṗ = −Hx

ż = Hp · p−H.

The first two equations do not depend on z, so we can discard the last equation, solve the
first two equations first, and integrate the last equation at the end.

This type of system is called a Hamilton flow.2 Many PDEs can be interpreted as
Hamiltonian flows. The Hamilton-Jacobi equations are of the form

ut +H(x, ∂u) = 0.

Next time, we will do a bit of variational calculus to not only solve Hamilton-Jacobi equa-
tions but to also see how we may extend a solution past a point where characteristics
intersect. In a Hamilton flow, the characteristics only depend on (x, p). When characteris-
tics intersect, they may have the same x but different p = ∂u. We will try to continue the
solution in a way such that ∂u has a jump discontinuity.

Example 1.3. Consider the equation{
ut + 1

2 |∂xu|
2 = 0

u(0) = u0.

Here, H(p) = 1
2p

2, and we get the system{
ẋ = p

ṗ = 0.

Here, the characteristics are straight lines, with p(0) = ∂xu0.
2Hamilton flows play a role in symplectic geometry.
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Example 1.4 (Eikonal equation). The equation

|ut|2 − |∂xu|2 = 0.

is not in the form we have talked about already. This gives

ut = ±|∂xu|,

so we will get 2 solutions.
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